•  

Structure of IZUMO1-JUNO reveals sperm-oocyte recognition during mammalian fertilization (Jun 2016)

nature
Title:
Structure of IZUMO1-JUNO reveals sperm-oocyte recognition during mammalian fertilization
Journal:
Nature 534, 566–569 (23 June 2016) doi:10.1038
Author(s):
Ohto U1, Ishida H1, Krayukhina E2, Uchiyama S2,3, Inoue N4, Shimizu T1
Author(s) affiliation:
1Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
2Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan.
3Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
4Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City, Fukushima 960-1295, Japan.
 

 

Short description:
Fertilization is a fundamental process in sexual reproduction, creating a new individual through the combination of male and female gametes1, 2, 3, 4. The IZUMO1 sperm membrane protein5 and its counterpart oocyte receptor JUNO6 have been identified as essential factors for sperm–oocyte interaction and fusion. However, the mechanism underlying their specific recognition remains poorly defined. Here, we show the crystal structures of human IZUMO1, JUNO and the IZUMO1–JUNO complex, establishing the structural basis for the IZUMO1–JUNO-mediated sperm–oocyte interaction. IZUMO1 exhibits an elongated rod-shaped structure comprised of a helical bundle IZUMO domain and an immunoglobulin-like domain that are each firmly anchored to an intervening β-hairpin region through conserved disulfide bonds. The central β-hairpin region of IZUMO1 provides the main platform for JUNO binding, while the surface located behind the putative JUNO ligand binding pocket is involved in IZUMO1 binding. Structure-based mutagenesis analysis confirms the biological importance of the IZUMO1–JUNO interaction. This structure provides a major step towards elucidating an essential phase of fertilization and it will contribute to the development of new therapeutic interventions for fertility, such as contraceptive agents.
Link to the journal
 

 

Abstract taken from PubMed

Abstract:
Fertilization is a fundamental process in sexual reproduction, creating a new individual through the combination of male and female gametes. The IZUMO1 sperm membrane protein and its counterpart oocyte receptor JUNO have been identified as essential factors for sperm-oocyte interaction and fusion. However, the mechanism underlying their specific recognition remains poorly defined. Here, we show the crystal structures of human IZUMO1, JUNO and the IZUMO1-JUNO complex, establishing the structural basis for the IZUMO1-JUNO-mediated sperm-oocyte interaction. IZUMO1 exhibits an elongated rod-shaped structure comprised of a helical bundle IZUMO domain and an immunoglobulin-like domain that are each firmly anchored to an intervening β-hairpin region through conserved disulfide bonds. The central β-hairpin region of IZUMO1 provides the main platform for JUNO binding, while the surface located behind the putative JUNO ligand binding pocket is involved in IZUMO1 binding. Structure-based mutagenesis analysis confirms the biological importance of the IZUMO1-JUNO interaction. This structure provides a major step towards elucidating an essential phase of fertilization and it will contribute to the development of new therapeutic interventions for fertility, such as contraceptive agents.
Link to the paper on PubMed
 




 

IVF-Worldwide.com endeavors to ensure that the information in this article is accurate,reliable and up to date. However, the information is provided "as is" without warranty of any kind. IVF-Worldwide does not accept any responsibility or liability for the accuracy,content, completeness, legality, or reliability of the information contained in this article.
IVF-Worldwide.com is not responsible for the content of other websites linked to or referenced from this website. The website does not endorse the information, content,presentation or accuracy of such other websites and does not make any warranty,express or implied, regarding them.